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Abstract

Similarity measures are largely needed for
a variety of tasks such as anomaly detec-
tion, classification and forecasting. In this
paper we explore the shortcomings of cur-
rent multi-dimensional correlations mea-
sures, namely the RV coefficient and the
normalized RV coefficient. When a par-
ticular dimension is positively correlated
between 2 samples, while another is nega-
tively correlated, these methods can pro-
vide undesired results. We propose a new
measure, the DwC (Deviation-weighted
Correlation) coefficient, which overcomes
these limitations. Our measure correctly
incorporates positive and negative corre-
lation on a dimension-by-dimension basis,
ultimately providing a more intuitive and
useful measure that generalizes to higher
dimensions for the comparison of arbi-
trary matrices. The measure also holds
some scaling properties which become use-
ful in the presence of noise. Lastly we
provide an example using accelerometer
data, to classify common human activities
based on maximum DwC between prede-
fined templates and the data.

keywords: RV coefficient, Template match-
ing, Distance measure, Similarity measure, Mul-
tivariate correlation, Dependency measure, Mea-
sures of association between matrices.

1 Introduction

With the rise of Big Data, fast and efficient data
analysis has been central to many sectors. Data
collection has become an industry of it’s own,
and with storage systems being able to handle
terabytes of information effortlessly, it is com-
mon practice to store a wide variety of data. Un-
fortunately, the curse of dimensionality creeps up
when it is time to analyse it. Time series are of
particular concern as the temporal dimensional-
ity has an associated ordering to it.

When it comes to all standard data science
practices such as clustering, classification, seg-
mentation, anomaly detection or forecasting, the
concept of distance between data often creeps up.
In what follows, we explore the current standard
known as the RV coefficient for similarity be-
tween multidimensional datasets. We then go
on to propose our own measure, the DwC coef-
ficient, carefully constructed to overcome short-
falls currently present, and extend this to a gen-
eralized similarity measure for matrices.

1.1 Similarity Measures

Correlation is used to measure the strength of as-
sociation and overall direction between data sets.
When it comes to template matching, they can
be thought of as an extension to distance mea-
sures in the sense that highly correlated samples
are more ”similar” to one another while lower
correlated ones are less ”similar”. There are
many correlation measures for bivariate samples,
but when it comes to higher dimensions, less is
known. We explore some of these in what fol-
lows.
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As Ramsay et al. (1984) said, ”Matrices may
be similar or dissimilar in a great many ways,
and it is desirable in practice to capture some as-
pects of matrix relationships while ignoring oth-
ers”. As is often the case with distance measure-
ments, there is no one clear cut answer. Usually
the method used will depend on the task at hand.

The RV coefficient proposed by Escoufier
(1969) is the most notable method for calculating
association between matrices. The RV coefficient
is derived to fall in the range 0 < RV (X,Y ) < 1
and RV (X,Y ) = 0 if and only if X ′Y = 0, ie.
all dimension are orthogonal between 2 matrices
X,Y , as shown in Josse and Holmes (2013). It’s
inspiration is to be an extension of the standard
correlation coefficient ρ, as making X,Y nx1 ma-
trices produces RV (X,Y ) = ρ2. This squaring
however has some unfortunately effects, as it now
eliminates the direction associated with the cor-
relation given by the sign of ρ. If some dimen-
sions have high positive association while others
have high negative association, the RV coefficient
will produce large overall associativity measures,
which as Ramsay et al. points out, will be a deci-
sion that will need to be made on a case-by-case
basis.

When it comes to template matching in im-
ages, Dawoud et al. (2011) utilize the Cross Cor-
relation and the Sum of Absolute Difference ap-
proaches. However, this technique is not robust
to rescaling or shifts in given dimension, limit-
ing it’s effectiveness for multi-variate signals in
general.

Nguyen et al. (2014) also propose Multivariate
Maximal Correlation Analysis (MAC), a tech-
nique which discovers correlations in the data by
searching for the transformations that maximize
their correlation. The results are promising, but
the process is of complexity order O(d2N

2
3 ), with

d being the number of dimensions and N the
number of data points. Furthermore, the set of
transformations must be pre-specified and pro-
vides ambiguity for generalized purposes.

Other common classification techniques in-
clude neural networks, where outputs can nat-
urally be used as proxies for similarity measures
between classes. However, network based ap-
proaches require retraining for any new classes

added, and hence don’t scale as easy as general-
ized template matching based on similarity mea-
sures.

2 DwC Coefficient

To overcome the shortcomings of the RV coeffi-
cient we aim to produce a new measure that will
correctly account for negative correlations. A
natural solution would be to collect correlations
along all dimension and weight them proportion-
ally to the size of their fluctuations.

Given 2 multivariate signals

X =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n

 ,

Y =


y1,1 y1,2 · · · y1,n
y2,1 y2,2 · · · y2,n

...
...

. . .
...

ym,1 ym,2 · · · ym,n


where n is the number of variables of each ob-
servation and m is the number of measurements,
we define the shorthand notation Xi to be the
ith column vector of matrix X,

Xi =
[
x1,i x2,i · · · xm,i

]T
which follows similarly for Yi. Furthermore, σXi ,
σYi and Cov(Xi, Yi) are the standard deviation
and covariance measures for the given column(s).

We define a new correlation coefficient, the
DwC coefficient as

DwC(X,Y ) =
n∑

i=1

γiρXi,Yi ,

where,

γi =
σXi + σYi∑n

i=1(σXi + σYi)

ρXi,Yi =
Cov(Xi, Yi)

σXiσYi
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with Cov(Xi, Yi) being the standard linear de-
pendance between columns Xi and Yi. Our DwC
coefficient can be rewritten in more compact
form as

DwC = ~γ · ~ρ

where

~γ =
[
γ1 γ2 · · · γn

]
~ρ =

[
ρX1,Y1 ρX2,Y2 · · · ρXn,Yn

]T
Our coefficient simplifies to the inner prod-

uct between 2 vectors. It’s worth mentioning
that the Cov(Xi, Yi) term is strictly a measure
for independent identically distributed (i.i.d.)
variables and only measures linear dependence.
However, as we will see in section 3, this tech-
nique produces good real world results. This in
effect removes the importance of the temporal or-
dering of the signal. It is an interesting property,
which may have advantages when it comes to effi-
cient database storage and smaller file sizes. Fur-
thermore, notice that our matrices X and Y need
not be equally spaced out in the time dimension.
This is a nice property as many devices sample
at rates which may oscillate depending on mul-
tiple internal factors. Financial instruments for
example, also fluctuate on time intervals which
are not constant. Without the need for inter-
polation, resampling and differentiating a given
dataset into increments (ie. St = Xt −Xt−1) to
achieve i.i.d. variables, our measure in theory
should be less prone to be misused, allowing us
to bypass standard preprocessing techniques.

3 Results

3.1 Synthetic Data

We begin with two simulated 3-dimensional sig-
nals X and Y , sampled at 1Hz for 40 seconds.
The first dimension will be a flat signal, the sec-
ond dimension a sinusoidal wave with an ampli-
tude of 50, and the last a linear sampling in the
range [−50, 50], for both. All dimensions have

Figure 1: Positively correlated signals in 3 dimensions
as seen in Trial 1. Red signal represents X while blue
represents Y .

white noise added to them (µ = 0, σ = 1). See
Figure 1 for a visualization of the two. Compar-
ing the two signals we calculate the RV coeffi-
cient, RV coefficient with mean shifted data, RV
coefficient with mean shifted data and normal-
ized, and our DwC coefficient. Results can be
seen in Table 1, under Trial 1.

Trial 1 Trial 2 Trial 3 Trial 4

RV 0.9979 0.3150 0.9980 0.9974
RV (MS) 0.9979 0.3152 0.9980 0.9974
RV (MS+N) 0.8680 0.3054 0.8513 0.8929

DwC 0.9819 0.4539 -0.1011 -0.9821

Table 1: Different association measure values for
variations of Signals X and Y

As desired all our measures provide values
close to 1, to signify high similarity between X
and Y , since they only defer by noise, which does
not dominate the actual signal overall. Subse-
quently we will change our sinusoidal wave to
a cosine one in signal Y , to produce a dataset
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Figure 2: Dimension 2 in Trial 2. Notice the wave
appears to be out of phase. Red signal represents X
while blue represents Y .

Figure 3: Dimension 2 in Trial 3. The wave is now
negatively correlated between the 2 signals. Red sig-
nal represents X while blue represents Y .

which should have a relatively low similarity
measure as dimension 2 between the signals will
be out of phase. This is shown in Trial 2 in Ta-
ble 1. Our DwC coefficient produces mid tiered
values around 0.45, slightly larger than the alter-
natives. This is due to dimension 1 having nearly
no pull on the DwC, unlike that of the RV coef-
ficients. This justifies why our value is close to
0.5 as dimension 3 is still highly correlated while
dimension 2 is not.

So far, the DwC measure doesn’t outperform
the rest, however it’s advantage will be evident
in Trial 3. We will revert signal Y ’s 2nd dimen-
sion back to the sinusoidal wave we began with,
but this time we will reflect it in the y-axis, as
to cause dimension 2 to be highly negatively cor-
related between X and Y . Notice how the RV
based measures all show high scores close to 1,
despite the fact that the signal in it’s most vary-
ing dimension is negatively correlated. The DwC
on the other hand, comes out at -.1011, implying
a slight (but not meaningful) negative correla-
tion. Combined with the fact that dimension 3
is still near-perfectly (positively) correlated be-

tween the signals, this is naturally the result we
desire.

Lastly we reflect dimension 3 of signal Y , to
produce a signal that should reflect an example
of negatively correlated datasets. See Figure 4.
As the RV coefficients are scaled to the range
[0, 1], and only measure association in the abso-
lute sense, they produce measures close to 1 for
X and Y . More precisely, in the absence of noise
Y = −X and so,

RV (X,−X) = 1 = RV (X,X)

Conversely,

DwC(X,−X) = −1

DwC(X,X) = 1

While the inability to detect the direction of
the correlation of the RV based techniques might
be warranted in some cases, it is its inability to
produce intuitive results like Trial 3, that really
could hurdle its use as a generalized multidimen-
sional similarity score.

3.1.1 Analysis

Different similarity measures have strengths and
weaknesses, and are largely dependant on the
task at hand one aims to achieve. We explore the
robustness of the DwC when it comes to trans-
lations and scaling, as well as it’s sensitivity to
noise in what follows.

Common time series analysis techniques rely
on a transformation of the data such as calcu-
lating the increments St between points Xt and
Xt−1, which clearly will be immune to transla-
tions of the signals. Our method doesn’t require
any special preprocessing, however it still pos-
sesses this property. Let

C = ~1T ∗
[
c1 c2 · · · cn

]
,
where ci are arbitrary constants and ~1 being a
standard row vector of ones, of size m. Then,
since

σXi+Ci = σXi
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Figure 4: Negatively correlated signals in 3 dimen-
sions from Trial 4. Red signal represents X while
blue represents Y .

for a column Ci, and

ρXi+Ci,Yi+C∗
i

=
Cov(Xi + Ci, Yi + C∗i )

σXi+CiσYi+C∗
i

=
Cov(Xi, Yi)

σXiσYi

= ρXi,Yi

with C* being some other matrix of constants
like C, then it follows that

DwC(X + C, Y + C∗) = DwC(Xi, Yi)

where C(X) and C(Y ) are some arbitrary con-
stant matrices such that each column consists of
the same constants (eg. shift all data points Xi

by C
(X)
i

Our DwC coefficient is also robust to slight
changes in scale, but careful attention must be
given to larger scale transformation. Suppose
we scale a signal X, by scale factors f1, f2, ..fn in
each dimension. Similar to translations, we can
show again that

σfiXi
= fiσXi

and

ρfiXi,f∗
i Yi

= ρXi,Yi

However, our γi’s will be different. Let γi be
the weights before scaling our signals and γ′i the
weights after scaling. Then

γ′i =
σfiXi

+ σf∗
i Yi∑n

i=1(σfiXi
+ σf∗

i Yi
)

fiσXi + f∗i σYi∑n
i=1(fiσXi + f∗i σYi)

6= γi

where f∗i are some other scale factors similar to
fi. This has the nonlinear effect of scaling a di-
mension’s weight γi, based on the scaling of that
particular dimension across both signals. This is
intuitively a result we might expect, as we fabri-
cated the DwC to be precisely sensitive to larger
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f = 0.5 f = 5 f = 50 f = 500

DwC 0.7440 0.9694 0.9819 0.9958

Table 2: DwC coefficient values as we scale up
dimension 2 of signal Y , in Trial 1 from Section
3.1.

fluctuations, and so by scaling a dimension, we
also scale it’s deviation.

As we can see in Table 2, scaling up a dimen-
sion with high correlation between signals, has
the effect of bringing our DwC coefficient closer
to 1, while scaling it down puts more emphasis
on the other dimensions. In the case that they
are not as strongly correlated (eg. dimension 1
being random noise), we can see that our DwC
coefficient will drop. Both of these results are
useful depending on the task we have at hand as
we will see in Section 3.2.

Lastly, we want to look at how the noise
present in each dimension, effects our DwC co-
efficient. More precisely, we want to see if our
measure is highly sensitive to changes in noise,
and if there are any shortcomings arising from it.
Back in Trial 1, our noise was a simple normally
distributed random variable with mean of 0 and
standard deviation of 1. This was strategically
chosen as dimensions 2 and 3 were of amplitudes
much larger than this standard deviation. In this
way, our weights γi, were larger for these dimen-
sions. Furthermore, the noise in these dimen-
sions was not large enough as to dominate the
signals entirely so as to illustrate our measure
well, initially. Let our noise be parameterized
entire by it standard deviation σN . Then for
large enough σN ,

ρXi,Yi → 0

since Xi, Yi will be approximately i.i.d. ran-
dom variables with respect to one another, and
so Cov(Xi, Yi) will tend to 0. Numerically, this
can be seen in Table 3.

It’s important to note that we increased the
noise in all dimensions in both signals here, un-
like with scaling where we only limited our anal-
ysis to a single dimension in one signal. We
do this because, usually our noise level with be

σN = 0.1 σN = 1 σN = 10 σN = 100

DwC 0.9984 0.9819 0.8200 0.1738

Table 3: DwC coefficient values as we increase
the noise levels across all dimensions of both sig-
nals, X and Y .

Figure 5: Our initial signals from Trial 1 after increas-
ing the noise level tenfold. Red signal represents X
while blue represents Y .

equipment dependant and not proportional to
the reading. For example, a GPS system will
allow accurately measure geospatial location to
a level of confidence in all direction equally. A
similar results should be present with dimension
dependant noise levels, but a key feature of the
DwC might be missed. Precisely, notice with a
σN of 10 units, our DwC coefficient still provided
a reasonable similarity between signals of 0.8200
despite the fact that dimension 1 is entirely over-
run by noise and dimension 3 no longer resem-
bles the straight line structure we initially had
in Trial 1. This can be seen in Figure 5.

As we increase σN to a value of 100, it now is
larger than the amplitudes of dimension 2 and
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range of dimension 3 combined, and so as we ex-
pect, similarity between the signals is no longer
present.

3.2 Real Data

We proceed to test our DwC on real world data.
For this, we utilize the MHEALTH Dataset
Nguyen et al. (2015); Banos et al. (2014), con-
sisting of 10 subjects performing a routine of 12
activities. Three measurement devices were at-
tached to each subject, collecting a wide range
of body motions and vital signs. The data is
already sampled at 50 Hz, and so no further pre-
processing is needed. For our analysis we utilized
all signals except for the magnetometer readings,
as they are indicative mostly of direction which
greatly reduced accuracy as expected.

Activity similarity scores can be seen in Fig-
ure 6, for a single repetition of a given activ-
ity between subjects 1 and 2. One can think of
either subjects’ data as the templates, and the
other as samples we’re trying to match to a tem-
plate. Not surprisingly, our DwC coefficient is
low between all the stationary activities (stand-
ing, sitting and lying down), as readings on the
devices will all be relatively stable for these 3 cat-
egories. We’ve omitted these results in what can
be seen in Figure 7. Optimal values range be-
tween 0.22 and 0.75 for matching activity classes.
Despite relatively low values for some (cycling),
the scores are always largest for a given activ-
ity versus all the rest. This can be useful as a
template matching classifier for a known set of
activities (ie. predicting what activity a subject
is performing using only the information from
the 3 sensors). Conversely, RV coefficient scores
can be found in Figure 8. Notice how similar
the RV measure finds the first 6 activities; a re-
sults that will be problematic for classification
purposes. Furthermore, scores nears 0 appear
using the DwC coefficient indicating dissimilar-
ity, while the RV measures are all above 0.40 and
provide no intuitive meaning.

Figure 6: DwC coefficients for all 12 activities be-
tween 2 subjects.

Figure 7: DwC coefficients for 9 non-stationary ac-
tivities between 2 subjects.
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Figure 8: RV coefficient for 9 non-stationary activi-
ties between 2 subjects.

4 Discussion

Our DwC coefficient holds some useful properties
when it comes to multidimensional signals, which
can naturally be extended to a matrix similar-
ity measure, using the formulation we defined in
Section 2. First, is it’s flexibility when it comes
to dimension specific scaling and translations.
This is a property that may or may not be of
use to a given task. For example, given geospa-
tial signals over some time frame, our DwC co-
efficient can measure similarity independent of
object location. This is true since each dimen-
sions’ deviation and correlation is not shift de-
pendant. By being robust to scaling, it also pro-
vides a measure independent of subject size and
shape. For example, consider the force exerted
by a professional athlete vs those of a child in the
activity of running. Scaling a given dimension
only has the effect of changing it’s voting power
on the final measure, with factors greater than
1 increasing it’s weight, and factors less than 1,
decreasing it.

Secondly, the measure has an intrinsic noise
robustness property due to the larger deviat-
ing dimensions having larger γis associated with
them. Any time noise levels (as measured by
σN for example) are sufficiently smaller than the
swings in the highly active dimensions, their ef-
fect will be negligible. In this manner, dimen-

sions which may consist only of static will not
sway the DwC coefficient, making it useful in a
large set of applications such as template match-
ing, sentiment analysis and forecasting.

There is no clear distance measure between
matrices in general. Unlike a vector which can
represent a point in n-dimensional space giving
rise to a concrete idea of distance between points,
matrices are representations of transformations.
This is similarly true for the DwC coefficient as
it may only be useful depending on the kind of
data that is being analyzed and what the user
would determine as ”similar”.

Our DwC coefficient produces similar results
to the popular RV coefficient for most cases,
while correctly improving on cases where inter-
dimensional correlations may be of different signs
(positive in some, negative in others), assigning
them lower scores. It also differs in that it can
produce signals of ”negative association” when
the coefficient is less than 0. However, such val-
ues should not be misinterpreted necessarily as
being highly dissimilar. Instead values near -1
can be representative of high similarity when it
comes to template matching, but under some re-
flection. Again, interpretation will have to be
considered on a case by case basic. Nevertheless,
values near zero represent low similarity.

5 Conclusion

The RV coefficient is a commonly used measure
to compare associativity between matrices. De-
spite it’s simplicity in implementation, it has a
few weaknesses. Precisely, it’s inability to cor-
rectly separate away negative correlation away
from positive in a given dimension. Further-
more, it treats every dimension equally, which
often will be undesirable in the case of dimen-
sions being largely made up of noise as is usu-
ally the case with signal processing. We propose
a new similarity measure, the DwC coefficient,
that overcomes both limitations. The DwC co-
efficient scores closer to 0 (intuitively represent-
ing less similar signals), when some dimensions
are positively correlated while others are nega-
tively correlated. Furthermore, as is often the
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case in body motion devices, larger perturba-
tions are more indicative of the overall nature
of a signal and so naturally, the DwC measure
gives more weight to such signals, thereby by-
passing false results caused by noise inherent in
stable signals. Negative DwC values should not
be confused as highly dissimilar, and low values
(near zero) indicate low similarity.
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