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Abstract

In this paper we apply various clustering techniques to volatility and market sentiment measures

of historical Bitcoin prices in order to identify hidden structural patterns by separating the data into

different classes known as regimes. Regimes are a common indicator for traders and asset managers

to look at when deciding what actions they want to take. For instance, hedge funds might avoid

trading in highly volatile times where-as option traders might prefer. To separate the data, we

perform K-means, Ward, Birch and complete-linkage Agglomerative clustering algorithms. The

resulting clusters are then used as state vectors in a Markov Chain model that predicts the market’s

state in the short term horizon. Finally, we provide an improvement to our one time-step-ahead

forecast using historical results and the conditional probability framework.

keywords — bitcoin, BTC, cryptocurrency, clustering, volatility regimes, alternative

assets, financial forecasting

1 Introduction

Bitcoin (BTC) is a virtual currency, part of a larger class of digital currencies known as cryptocurrencies,

where payments are pseudo-anonymous and independent of third parties such as banks and governments

[1, 2, 3, 4].

Introduced in 2009, BTC is a decentralized cryptocurrency utilizing the blockchain technology to

record transactions in a public ledger. Unlike fiat currencies and precious metals, Bitcoin is not a physical

good, but instead just a record on a database maintained by a network of users known as ”miners”, public

to the world [5, 3, 6]. A tremendous interest has been given to BTC price volatility which, according to [7],

is more volatile than gold. A study by [8, 9] demonstrated that financial assets display common windows

with large price changes that tend to cluster together. Furthermore, we encounter drastic changes in
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behaviour at the market extremes such as the 2008 global financial crisis where volatility, mean returns

and correlation patterns in stock returns changed abruptly. Identifying these regime changes is critical

for the analysis of equities, fixed income securities and a great number of macroeconomic variables [10].

Given a firm’s trading strategies, a fund manager can utilize the current volatility conditions to adjust

which ones to give preference to, or when to step away from the market.

Clustering analysis plays a critical role in identifying regime changes, and there have been a number

of clustering techniques developed and successfully applied for regime changes in time series data. For

example, in [11], the TreeGNG algorithm was used for clustering analysis of a high dimensional data set,

full of noise. In this paper we examine how common clustering techniques perform when used to partition

the volatility regimes of historical Bitcoin prices. We will then analyze how these regimes correlate to one

another, and use the correlation to better predict future regimes. Allocation can be made proportional

to these transitional probabilities, to optimize any objective the firm may desire. Strategy returns and

risk levels can then be trivially back-tested, but are outside the scope of this paper.

2 Background

2.1 Volatility Regimes

Trading strategies utilizing heavy shorting positions perform best in bear markets. In contrast, a high

frequency strategy will tend to perform best in a highly liquid and volatile market. It may even be the

case that a strategy outperforms it’s returns in conditions unlike those it was initially intended for. We

call these market conditions, volatility regimes, as volatility is the central factor in identifying these time

periods. For instance, the financial crash of 2008, can be weakly coined as a highly volatile, heavily

downward trending market incident.

We refer to this as a weak definition, as there isn’t a necessary condition on what is deemed high

volatility, and heavily down trending. Furthermore we are conditioned to identify simple linear patterns

in our world, extending our assumptions indefinitely, while missing out on much of what only a computer

might see, and falling victim to countless biases. For example one might think a low volatile, heavily

bullish market might be a market state, but this may not even be possible depending on the volatility

measurement chosen, as we will see later on. These intuitive groupings we make, are not a systematic

approach to differentiating regions in our state space, and also lack concrete threshold levels as well as

a statistical backing.

2.2 Clustering

Clustering is a mathematical technique that separates a data set into clusters, where the data points in

the same cluster share similarity and data points belonging to different clusters are dissimilar [12, 13, 14].
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Clustering helps find structures in a data set and is one of main pattern recognition tasks, and widely

used by to inform strategy decision making by investors, financial creditors, stock holders, etc [13].

In what follows, we will explore the K-Means [15], Ward’s Method [16, 17], Complete-Linkage [18,

19, 20, 21] and Birch [22] algorithms for the identification of Bitcoin volatility regimes. Our analysis is

general enough however, to be extended to other cryptocurrencies and asset groups.

3 Data Cleansing and Preparation

3.1 Resampling

Our training data is taken from www.BTCe.com, a Bitcoin exchange which publishes all trading data

that passes through their exchange since their inception in 2011. It’s important to note that real world

trading data has no set sampling rate for transactions. Instead, in one second there may be a large

number of orders, while the next may have none. In this paper we limit our data sample to BTC data

starting from 2015 since the asset was relatively liquid after that. Our goal is to have an hour-by-hour

prognosis of the market, hence a minute-by-minute sampling rate is a reasonable choice. Due to the

nature of the financial markets, when re-sampling such unstructured data in a given 60 second window,

there is the possibility of having more than one measurement, or no measurements at all. In case of more

than one measurement, we take the mean of all data points within that time interval in order to avoid

approximating the market price as the initial or final price alone. If we have no data over a 60 second

window, we proceed by filling the data point as the last entry, known as a forward-fill. This again is

intuitive for a price measurement, as the best approximation of an asset’s current value is it’s last traded

price.

3.2 Volatility and Direction Measurements

For the sake of simplicity, we will limit our analysis to only two variables. The two common factors

for identifying market regimes are volatility and market direction. Volatility index may be an intuitive

choice, but since BTC is relatively new, no large financial institution has created a market standard.

Services like btcvol.info provide 30 and 60 day volatility measurements, but these are too long of time

periods for our analysis. We proceed by building our own measurement similar to btcvol.info [23] by

using the standard deviation of our data in each preceding 60 minute window shown in Figure 1.
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Figure 1: Example of BTC price and 60-minute volatility measure from mid January to late February
in 2015

A better measuring tool used in financial instruments is the implied volatility which is calculated by

reverse engineering options prices in the market. However, in this study this is not currently viable with

the immaturity of the Bitcoin derivatives market. To demonstrate the market direction we calculate

short term measurement of the change in price from one minute to the next by the following equation

∆t = Pt − Pt−1

where Pt is the price of a Bitcoin in USD at time t. This can be taught of as a speed indicator

computed every minute for BTC, but it’s important to realize this as a highly noisy measurement due to

the random fluctuations in minute to minute trading. To account for this, we apply a common moving

average technique of length 60 minutes, and compute a new smoother measurement

St =

∑59
i=0 ∆t−i

n

for our price direction as can be seen in figure 2. The choice of averaging out the past 60 samples is

again due to the fact that we want a measurement related to the market direction hourly, so any more

data would be correlated with the previous measure, while any less would be failing to utilize all the

information we have.
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Figure 2: Example of data smoothing using a 60-minute moving average on BTC prices over a two hour
period

It is also possible to use other measurements for determining the trend in the short term market

conditions such as the spread between a long and short moving average filter. In such a scenario, a short

term smoothing jumping over the long term would indicate that the market is currently experiencing a

climb higher than the recent historical average, and possibly making a run up. Trend filtering for long

and short momentum indicators is explored by [24].

3.3 Regularization

The last thing we want to is standardize our different measurements. We do this using a simple z-score

transformation define by

zi =
Xx − X̄

σX

with X̄ and σX being the sample mean and standard deviation respectively, for each measure. Since

we may utilize some algorithms which rely on Euclidean distance measurements, it’s important that we

perform this step in order to assure our measures are of the same scale. Furthermore, since some of the

algorithms employ an optimization step, it is ideal to have our data standardized or normalized to assure

faster convergence [25]. We choose standardization over normalization in order to keep open boundaries

in our domain.

3.4 Final Slicing/Sampling

Since our data is now sampled on a minute to minute basis, with measures relying on the past 60 minutes

at each step, we re-sample our data one more time with an hourly range. This is to assure we are not

feeding our algorithms highly correlated data points, since the volatility over the last hour from one

minute to the next is nearly identical. We choose to formulate our final data set with one data point per

hour, so as to have 8760 points per year’s worth of data.
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4 Results

4.1 Volatility Clusters

As a base case, we consider a fund who’s strategies are not market dependent. A simple approach may

be to divide our market in two (or more) groups based on linear boundaries across each variable. For

two arbitrary measures X and Y we can segment our data such that

f(X,Y ) =



State 1, if X ≥ X̄,Y ≥ Ȳ

State 2, if X ≥ X̄,Y ≤ Ȳ

State 3, if X ≤ X̄,Y ≥ Ȳ

State 4, if X ≤ X̄,Y ≤ Ȳ

Graphically this will split our data into convex regions with linear boundaries as seen in Figure 3.

However, the regions do not divide the data in a useful fashion and there are few problems with this

approach including outliers having a strong weight on our boundaries and partitioning through a cluster

of points which are similar in nature.

Figure 3: Basic partitioning of 2-D data producing four distinct market regions.

Instead, we will take a more systematic approach to cut our data. Before we begin applying our

algorithms to our clean data, we first analyze it visually to identify any obvious clusters and/or any

underlying structure. We show 40% of our data in Figure 4 in order to see our data distribution without

cluttering the plot.

The data does display a common shape known as a Markowitz Bullet [26] in finance, which shares

similar measurements. There are no obvious disjoint clusters but that is not too troubling as there are
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Figure 4: Distribution of cleansed data

specific regions and symmetries present that should partition the data reasonably.

4.1.1 Convergence Times

Before diving into a full clustering analysis, we test our algorithms on smaller batches of data to see how

they perform. We are dealing with over 15,000 data points and so some algorithms may not scale well

to this size. The following chart and plot show how long (in milliseconds) each method took to execute

for different sample sizes:

Algorithm 100 500 1000 2500
K-Means 25 26 37 80
Agglomerative 2 75 1003 10616
Ward 8 75 1010 10098
Birch 28 36 71 154

Table 1: Execution times in milliseconds of each algorithm for varying amount of data points.

Our Agglomerative and Ward algorithms display exponential executions times, and did not converge

within reasonable time on an year’s worth of data. The aforementioned results were obtained on a

standard CPU with optimized numerical analysis packages, but performance times may vary. However,

the importance to note here, is the order of the growth of the processing time for each algorithms as

data size increases.

4.1.2 Number of Clusters

Determining the number of clusters is the next logical question one would ask, since all our algorithms

require this parameter. In the case where a firm has some group of regimes already in operation in their

7



Figure 5: Algorithm convergence times for different sample sizes (in milliseconds)

diagnosis, it is intuitive to try to mimic those clusters already in place, and choose that as your value.

Another factor we want to keep in mind is that there is heavy symmetry in our data and a flat low

volatile regime is a must in our results for obvious reasons, so an odd number of clusters is a good logical

requirement to have (1 for neutral state and equal number of bull states as bear states).

A common heuristic at this point is to use the Elbow Method [27], which looks at the scree plot, and

tries to identify where the elbow joint lies on the graph. This however is limited by your scale of the

plot, and a complete solution can rely on many different factors and parameters. Other choices for our

clusters is described in greater detail in [28] and more specifically for the k-means algorithm in [29]. We

decided to stop adding clusters at the point where any new cluster reduced our total inertia by less than

20%. Since this was at 4 clusters, we decided to continue our analysis with 5 to assure the symmetry

criteria mentioned above.
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Figure 6: Example of a scree plot for the k-means algorithm measuring the accuracy of the cluster, in
this case using a total inertia measurement.

The results of K-Means and Birch clustering can be seen in Figure 7. Notice that our decision

boundaries are linear but not simply vertical or horizontal cuts, giving rise to some interesting groupings.

For example, in the bottom left plot, a point in region 1 (green) can have a higher volatility than a point

in region 3 (purple), yet be classified as a lower volatility regime group.
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Figure 7: Clustering using 3 and 5 clusters, using K-Means on the left and Birch on the right

The Birch algorithm gives us non-linear boundaries altogether, and the clusters also display a shift

from the symmetric structure we first hypothesized. The statistical inference picked up on slight dissim-

ilarities between up-trending and down-trending market conditions given the same volatility. This is the

power of clustering, distinguishing underlying patterns systematically.

4.2 Markov Chains

4.2.1 State Matrix and Probabilities

Applying the new models, we proceed to scan historical data and compute the frequencies of how each

point’s cluster changed in the next time period (1 hour). In other words, we count how many times

points began in cluster Ci and ended up in cluster Cj an hour later.

This can be summarized in a nice Markov state matrix defined as

S =



s1,1 s1,2 · · · s1,n

s2,1 s2,2 · · · s2,n
...

...
. . .

...

sn,1 sn,2 · · · sn,n


where n is the number of clusters we have, and si,j is the number of points our model would consider
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being in cluster Ci at some time period, and in cluster Cj in the subsequent time period. We can build

this model easily by looking back at our data, and can trivially convert this matrix into a probability

matrix of going from cluster Ci to cluster Cj in one time period (1 hour), using a simple binomial view.

More precisely

P =



p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n
...

...
. . .

...

pn,1 pn,2 · · · pn,n


where

pi,j =


0 if

∑n
j=1 si,j = 0

si,j∑n
j=1 si,j

otherwise

Here, each element pi,j is the probability of going from cluster Ci to cluster Cj in a one hour time frame,

as measured by the historical frequency of such an event occurring.

We can further introduce a confidence for each of our probabilities, as given by the Wald method

p̂± zα
2

√
p̂(1 − p̂)

n

where zα
2

is set to 1.96 for a 95% confidence measure as determined from the standard normal distribution,

and n being the row sum in matrix S for a particular probability. Note here that we can have division

by zero, and so our accuracy measure of such a sample is undefined as it should be with a sample size of

0.

4.2.2 Transitions

If we define our current state as the elementary basis vector of length n:

X0 = ei =



0

...

0

1

0

...

0


with one element in state si, we can use our probability matrix P to compute the probability of where we

will lie in N time periods by XN = XT
0 P

N . For example given the probability matrix from our K-Means

three clusters model, and a current market condition of state three, we can predict in two hours that we
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will lie in cluster Ci with probability

XN =

(
0 0 1

)
0.9611 0.0132 0.0255

0.5638 0.1737 0.2624

0.6528 0.1301 0.2169


2

=

(
0.8425 0.0595 0.0979

)

and similar results can be formulated for the confidence intervals.

This kind of a model is useful as it not only gives the volatility regimes we currently lie in, but can

also forecast the future. This inform our decision on allocating our trading strategies accordingly for the

current time period, and inform the diagnosis of how they will likely change in the near term horizon,

which may be useful for strategies that rely on holding a position for a longer period.

5 Conclusions

Using a group of common clustering algorithms, we identified market volatility regimes using common

market measures. Patterns arose that gave way to predictive models not otherwise attainable by common

means of the human eye. More importantly, these cluster divide the market into well defined regions

which we can easily check and optimize for given a series of trading algorithms simple back-testing

procedures. We aim to perform such back-testing in the future for a more in depth analysis of the

strength of our results and predictors. We also aim to add volume and news sentiment measures to

hopefully increase our predictive power.

It was shown that both the K-Means and Birch algorithms were reasonable choices for the division

of the data, and results for which is better may be different from fund to fund. Choices of 3 or 5 were

both reasonable choices for our total market regimes, though further work can be done here.

The Markov chain model was applied to each cluster in order to approximate our market in the time

period ahead. The steady state probabilities of the chain were preserved in this fashion, (used to predict

the number of expected time periods of stay in each market state over a long period), as well as any

other properties of the Markov chain framework.

Lastly, an improvement to the model was explored as to increase the accuracy of our predictions.

Other similarity measures, again, can be explored further.
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